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Spectrum-generating functions for strings and superstrings 
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Abstract. The spectrum-generating functions for a variety of strings and superstrings are 
derived. These are expressed in terms of characters of irreducible representations of the 
appropriate transverse spacetime syhmetry group and, in the case of heterotic strings, the 
relevant gauge group Es x E, or Spin(32)/Z2. The expansions involve principal specialisa- 
tions of characters of both GL( N)  and GL( M /  N) in the limit as M and N tend to infinity. 
By using Schur function methods, modification rules and various theta function identities 
a number of spectrum-generating functions are derived and tabulated. The equivalence 
of the cso-projected Neveu-Schwarz-Ramond superstring and the Green-Schwarz super- 
string is proved, and the connection between the lattice formulation and the cso-projected 
Neveu-Schwarz-Ramond formulation of heterotic strings is spelled out. 

1. Introduction 

Various group theoretical aspects of a number of different string models have already 
been explored and exploited. In particular Ramond [ 13 has described a procedure for 
determining explicitly the transformation properties of the string states of given mass 
under the action of the group SO(D - 1) relevant to strings in D-dimensional spacetime. 
His work covered not only bosonic strings but also fermionic strings and indeed 
heterotic strings. However, for all but low-lying mass states the method used was 
prone to calculational complexities which concealed possible regularities in the string 
spectra and gave little hope of determining the degeneracies of particular irreducible 
representations at any given level. 

A different approach which is well suited to solving this latter problem has recently 
been enunciated by Curtright and Thorn [2]. This depends on writing down for each 
string a spectrum-generating function x(x, q )  in the form of an SO(D - 1) character 
generator. When expanded in the form 

the coefficient n i  gives the number of times the irreducible representation A of 
SO(D - 1) having character X ’ ( X ) ~ - ~  occurs in the level L. In flat spacetime the mass 
squared of this level is Lo+ L, where Lo is the mass squared of the vacuum state. 

In D-dimensional spacetime string theories the relevant transverse symmetry group 
is SO( D - 2). Massless states span representations of this group whilst the massive 
states span representations of the larger group SO( D - 1). In the cases under consider- 
ation D is even and it is convenient, as in ( l . l ) ,  to express group characters in terms 
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of the parameters x = (x,, x2, . . . , XZk-1, X2kr 1) with D - 1 = 2 k +  1, where the com- 
ponents of x are eigenvalues of an arbitrary SO(2k + 1) group element. In accordance 
with the usual conjugacy class parametrisation of S 0 ( 2 k + l )  we have x =  
(el41, e">, . . . , e"A, e-l'l, e-''2,. . . , e-'*A, 1). The restriction to SO(2k) is effected as 
far as the parametrisation of characters is concerned merely by dropping the last 
component 1 from x. No confusion should result from using the same symbol x in 
connection with both SO(2k) and SO(2kS  1). It should further be stressed that the 
components have been arranged so that 

xk+, = x,-' = e-'+) j = l , 2  , . . . ,  k. (1.2) 
This pattern will recur throughout this paper. 

For a number of string models it is a very straightforward matter to write down 
the appropriate spectrum-generating function and the only task remaining is that of 
expanding it in the form (1.1). Curtright et a1 [3], guided by an earlier conjecture [2], 
have succeeded in carrying out this expansion explicitly in the case of the open bosonic 
string. The results involve the principal specialisation of characters of GL( N )  as N +  00. 

Subsequently this work was extended in [4] to the case of the open Neveu-Schwarz 
[5] and Ramond [6] strings which each possess both bosonic and fermionic excitation 
operators. In these two cases the relevant expansions (1.1) involve two specialisations 
of characters of the supergroup GL(M/ N )  with both M + 00 and N + 00. 

In the present paper it is demonstrated that these results may all be obtained very 
easily by exploiting S-function methods as expounded first by Littlewood [7] and to 
some extent summarised by Macdonald [8]. These techniques shed light on a number 
of aspects of the problem: on the way that characters of supergroups enter the analysis; 
on the identification of certain prefactors, appropriate to the k + 00 limit, with infinite 
series of S functions and their generalisation to infinite series of supersymmetric 
functions; and on the necessity of applying the modification rules of SO(2ki-1) to 
correct for the fact that k is actually finite. In this way it has been possible to deal 
with each of the three open string models in a unified manner including, for the first 
time, the complete analysis of the spinor characters of S 0 ( 2 k +  1) which necessarily 
arise in the case of the Ramond string. 

The paper is organised so that the open bosonic string, the Neveu-Schwarz string 
and the Ramond string are dealt with successively in 9 9  2, 3 and 4, respectively. 

Although they each contain both bosonic and fermionic excitation operators neither 
the Neveu-Schwarz model nor the Ramond model is supersymmetric and the former 
contains a tachyonic ground state A very considerable advance was made by Gliozzi 
et a1 [9] who applied a projection which restricted the Neveu-Schwarz model to states 
of even G-parity and the Ramond model to one for which the ground state was a 
Majorana-Weyl spinor. By setting the number of spacetime dimensions to ten, they 
then showed that the number of physical states of the bosonic Neveu-Schwarz sector 
and the fermionic Ramond sector are equal at each mass level. They did this by 
exploiting an abstruse identity due to Jacobi [lo, P 1471. 

Inspired by this development Green and Schwarz [ 111 produced a manifestly 
supersymmetric version of this model based on the same ground state as the ten- 
dimensional Gso-projected Neveu-Schwarz-Ramond model but incorporating 
different excitation operators. 

The equivalence of these models, which is not at all obvious, is discussed in 0 5 .  
The Gso-projected Neveu-Schwarz-Ramond spectrum-generating function is written 
down and is then shown to be identical to the Green-Schwarz spectrum-generating 
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function. This result is established by making use of a theta function identity, again 
due to Jacobi [ 10, p 5071, which seems to have been exploited first in this context by 
Nahm [12]. A particular merit of this identification of the cso-projected Neveu- 
Schwarz-Ramond model and the Green-Schwarz model is that the spectrum of the 
latter is then determined to be that of the former. The first few levels are then tabulated 
on the basis of the calculations of 00 2 and 3. 

Section 6 is concerned with the heterotic string models of Gross et a1 [ 131 involving 
the gauge groups E8 x E8 and Spin(32)/Z2. These models involve certain even self-dual 
lattices associated with the weight spaces of the gauge groups. By making use of theta 
function expansions, yet again due to Jacobi [ 10, p 5011, the gauge group contributions 
to the spectrum-generating function are rewritten in the form of factors of the type 
appearing in the cso-projected Neveu-Schwarz-Ramond model. In this way they are 
explicitly evaluated and tabulated. This enables the complete spectrum-generating 
function of each of the heterotic string models to be written down. Of course, these 
models are closed string models with left- and right-hand sectors so that the spectrum- 
generating functions take the form 

x ( x ,  t, 9, r )  = X R b ,  r ) x L ( x ,  t, 4 )  (1.3) 
with 

m 

x R ( x ,  r )  = rRo c mhRxA(x)D- , rR  
R=O A 

exactly as in (l.l),  but with 

Here X @ ( X ) ~ - ~  and X ’ ( t ) c  denote characters of irreducible representations of the 
spacetime symmetry group SO(U - 1) and the gauge group G, respectively. The 
boundary conditions for closed string models imply that the levels of the right- and 
left-hand sectors must be matched. Thus in the expansion of (1.3), since (1.3) is the 
product of (1.4) and ( lS),  it is only necessary to retain those terms for which 

(1.6) 
This matching procedure is applied to the heterotic string models to produce a table 
indicating both the spacetime SO(9) content and the gauge group content of the ground 
state and the first five excited states. 

Some concluding remarks are made in 0 7 which emphasise that the techniques 
used here have a wide range of applicability, extending for example to the D = 26 
giant superstring model of Thierry-Mieg [14]. 

Ro+ R = Lo+ L. 

. 

2. The open bosonic string 

In the case of the open bosonic string the vacuum state is an SO(2k) singlet state 
which is tachyonic with mass squared Lo= -1 whilst excited states are generated by 
the action of the bosonic operators a i n  with i = 1,2, .  . . , 2k  and n = 1,2, .  . . , CO. These 
operators, for each fixed n, transform as the basis states of the defining vector 2k- 
dimensional irreducible representation of SO(2k). Moreover each operator a!,  con- 
tributes n to the mass squared value. It follows that the required spectrum-generating 
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function (1.1) is given by 
00 2 k  

x B ( x ,  4 )  = 4-l n n (1 -x iqn)- ' .  (2.1) 
" = I  ! = I  

The factor xiq" is associated with the operator a [ , , , x i  takes care of the SO(2k) 
transformation properties and q" takes care of the mass squared contribution. The 
inverse power of each factor in the product allows for the fact that the operators are 
indeed bosonic so that multiple excitations may occur. 

The key to expanding this generating function is the formula [7, p 103; 8, p 331 

where the summation is carried out over all partitions (+ = (a , ,  a 2 , .  . .). Such a partition 
specifies both an irreducible representation of GL( N )  with character { a } ( y ) ,  and an 
irreducible representation of GL(2k) with character { ( + } ( x ) ~ ~ .  These characters are 
symmetric functions of their arguments and are known as Schur functions or S functions 
[7], which may also be denoted [8] by su(y)  and s u ( x ) ,  as appropriate. 

What is really required in applying (2.3) to (2.2) is the principal specialisation of 
the character { ~ } ( y ) ~  for which y = q with qn = q" for n = 1,2 , .  . . , N with N +  CO. 

The corresponding value is denoted by {a}(q) ,  and may be taken, for example, from 
the work of Littlewood [7, p 1241 or Macdonald [8, p 281. 

It remains to rewrite the character { ( T } ( X ) ~ ~  of GL(2k) in terms of characters of 
[ P ] ( X ) ~ ~ + ,  of SO(2k + 1). This is readily accomplished by using Schur function methods 
involving certain specific infinite series of Schur functions [ 151. Under the appropriate 
restrictions of group elements we have 

GL(2k) + SO(2k) {fl I(X)Zk = [ V / 0 1 ( X ) 2 k  (2.3) 

SO(2k) + S 0 ( 2 k +  1) [ 7 1 ( X ) 2 k  = [7/LI(X)2k+l (2.4) 

GL(2k) + S 0 ( 2 k +  1) { ( + ) ( X ) Z k  = [ a / H 1 ( X ) 2 k + 1  (2.5) 

giving the relationship 

where 

in which the sum is taken over all partitions T and ] T I =  rl + r2+. , . is the weight 
of T. 

Incorporating these results in (2.1) gives 

XB(x, 4) = 4-l 2 { a ) ( q ) m [ a / H I ( X ) 2 k + l *  (2.7) 
U 

The coefficients appearing in Schur function products and quotients are identical [7, 
p 110; 8 p391: 

{Pu ) { r l=  c c;T{(+l and {a/ = c c;ll{P.>. (2.8) 
U I.r 

It then follows from (2.7) that 
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The principal specialisation referred to above gives [8, p 281 

The product is over all boxes of the Young diagram F p ,  each specified by row and 
column labels i and j, whilst h, is the hook length of the box in the (i, j ) th  position: 

h, = p i  + p ;  - i -j+ 1 (2.11) 

where p‘ is the partition conjugate to p in the sense that, just as pi is the length of 
the ith row of F’”, so 11.1 is the length of the j th  column of F’”. The notion of hook 
length is illustrated in figure 1. 

I l l  I I l l  

Figure 1. Illustration of the hook length formula (2.11) in the case f i  = (654232212) and 
(i, j )  = (3 ,2)  for which /L, = 4 and = 7, leading to h,, = 7. 

Finally the generating function for H [16] is such that 

H(q),= n (1+qfl)-l n ( l - q m + y  
I r n < m  I r m < n < m  

(2.12) 

so that 

H ( g ) , =  1 - q+q4+q6+2q8+3q10+  q 1 1 + 6 q L 2 + 2 q 1 3 + 9 q 1 4 + 6 q 1 5 +  16qI6+. , . . (2.13) 

It appears that the substitution of (2.10) and (2.12) into (2.9) would then yield the 
required expansion of the spectrum-generating function. However there is a subtle 
difference between (1.1) and (2.9). In (1.1) the summation is over all inequivalent 
irreducible characters X ”  of SO(D - l) ,  whereas in (2.9) the summation is over all 
partitions p. Unfortunately, the characters [p](X)2k+l of S 0 ( 2 k +  1) specified by 
partitions p are not all linearly independent. Indeed the complete set of standard 
inequivalent irreducible characters of S 0 ( 2 k +  1) are those specified by partitions p 
for which the number of parts pi satisfies the constraint pi s k. If p ;  > k then recourse 
must be made to the modification rule [17] 

[pl(X)Zk+l = (-1)’-’[p -hl(X)Zk+l with h = 2 p ;  -2k - 1 (2.14) 

where the Young diagram F w - h  is obtained from F’” by the deletion of a continuous 
boundary strip of boxes of length h starting at the foot of the first column and extending 
over j columns. 

The application of this to (2.9) then gives 

(2.15) 



3984 R J Farmer, R C King and B G Wybourne 

where the signed sequence [18] can be written as 

{ A ; k + l }  =c ( - W P ) { P }  
P 

(2.16) 

with a summation over all those p such that the repeated application of (2.14) gives 

[ P I ( X ) Z k + l  = (-l)"p"'A I(X)*k+l (2.17) 

where the sign factor ( - l )s(P '  = *1 depends upon p. This formula is the required 
expansion of the spectrum-generating function for the bosonic string. It has been 
obtained using slightly different means by Curtright er a1 [3] who specified the signed 
sequence diagrammatically. 

It follows from the modification rule (2.14) that 
00 

{ A ; k + i } =  2 2 (-l) ' i ' -m{A+h,,+hj,+. , . + A j , , }  
m=O ( j )  

with 

h, = 2k + 1 -2(Ai - j +  1) 

(2.18) 

(2.19) 

and 

l j l = j l + j 2 + .  . .+j,. (2.20) 

The second summation in (2.18) is over all possible sequences ( j )  = ( j , ,  j 2 , .  . . , jm)  
such that 1 S j ,  < j 2  < . . . < j ,  and the notation is such that A + h,, + h,, + . . . + h,, specifies 
a Young diagram obtained from F A  by the consecutive addition of continuous boundary 
strips of boxes of lengths h, with j =jl , j 2 , .  . . , j,, each starting at the foot of the j t h  
column and extending back to the first column. It is not difficult to see, as illustrated 
in figure 2, that these additions taken in this order all overlap one another and do 
indeed always reach the first column, extending down as far as the p,th row with 
p, = 2k + 1 - (A: - j  + 1). Although it is also possible to generalise the determinantal 
expansion 

{ A } =  l{lA;-'+'}l (2.21) 

to express the signed sequence in the form 
{ A i k t l }  = ~ { ~ A ~ - J + ' } + { 1 2 k - ' - A ~ t ~ + t } ~  (2.22) 

Figure 2. Illustration nf the addition of consecutive boundary strips required in (2.18) in 
the case A =(221) and k = 4 ,  for which (2.19) gives h ,  = 3 ,  h , = 7 ,  h,= 13, h4= 15, .  . . . 
Typically taking m = 3 and j = (1 ,2,4)  gives a contribution (+1) {43'213} corresponding 
to the diagram shown. Note that p ,  = 6, p 2  = 8 and p4 = 12. 
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it does not seem possible to exploit this to obtain a succinct form of the principally 
specialised character required in (2.15). It appears that for arbitrary A the optimum 
expression is (2.18). However, for the special case A = O  we have 

{ O S k + l }  = {0} + {lZk+'} - {212k+1} - {22k+2} + {312k+2} 

+{322k+'1}-{32 22k+1}-{32k+3}-. . , 
a* * . .  

r=O ( a )  2 k + a ,  2 k + a 2  . . .  2 k + a ,  
(2.23) 

where the Frobenius notation [7, p 601 for partitions has been used. The second 
summation is over all a = ( a l ,  a,, . . . , a,) with a ,  > a z > .  . .> a,SO and la1 = 
a,+a,+. . .+a,. 

In applying (2.15), as stressed elsewhere [2,3], the signed sequence problem 
disappears in the limit as k + CO since in this case no modifications are required. For 
finite k modifications must be taken into account in the case of sufficiently high levels. 
For given A the lowest level, L,(A), at which [A](x),~+, makes an appearance in (2.15) 
is 

'+; 
L,(A) = iAi = n ( A ) .  

i = l  
(2.24) 

Modified contributions first make their appearance at the level 

L = LB( A ) + (k + 1)(2k + 1 - 2A ;). (2.25) 

For the S 0 ( 2 k + l )  scalar character [O](X),~+, this takes the value ( k +  1)(2k+ l ) ,  so 
that in the case D = 26 and correspondingly k = 12 the first modification to the coefficient 
of [O](x),, occurs at the level L=325.  Unfortunately modifications are required at 
lower levels for other characters. The minimal case is provided by the S 0 ( 2 k + l )  
character [ l k ] ( ~ ) 2 k + l  for which the first modification occurs with L = (k + 1)( k +  2)/2, 
i.e. L = 9 1  if k = 1 2  and L = 1 5  if k = 4 .  

Since (2.12) can be written in the form 

(2.26) 

and every non-empty Yomg diagram contains at least one box of hook length h,, = 1, 
it follows that the coefficients in the expansion of {p}(q)aoH(q)O; .  in powers of q are 
all positive except for the single coefficient (-1) of q in the expansion of {O}(q )mH(q)m.  
This exception corresponds to the fact that for L = 1 the bosonic string states span the 
vector representation of SO(2k) whose character, when expressed in terms of SO(2k + 1) 
characters, takes the form [ 1 ] ( ~ ) , ~  = [ 1 ] ( ~ ) , ~ + ~  - [ O ] ( X ) , ~ + ~ .  This is not the character 
of a complete representation of S 0 ( 2 k +  l ) ,  attesting to the fact that the corresponding 
L =  1 level of the string is necessarily massless. 

Since all other coefficients of powers of q in the expansion of { p } ( q ) o o H ( q ) c o  are 
positive this would appear to provide a very simple proof of the fact that beyond the 
massless L = 1 level the spectrum is composed of basis states which do span complete 
representations of SO(2k + 1). However it is an unfortunate aspect of the modification 
rule (2.14) that it involves sign factors which show up in the signed sequence (2.16) 
and thus preclude the possibility of proving directly that in the expansion of (2.15) 
all terms are indeed positive for L >  1. For such massive states this must be the case, 
of course, but we are unable to supply a combinatorial proof of the fact. 
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Table 1. Bosonicspectrum: xe(x, q )  expressed in terms of S 0 ( 2 k +  1)  characters [ A ] ( X ) ~ ~ + ,  
for k 2 3 .  The dimensions and number of states are given in the cases k = 4  and 12 
corresponding to SO(9) and S0(25) ,  respectively. 

Dimension 

q-' 1 9 q 2  q3 q4 q5 SO(9) SO(25) 

-1 1 1 

1 1 

1 

1 1 

1 1 

1 

1 1 
1 1 

1 

1 1 
1 9 
2 44 
1 156 
1 450 

1122 
1 2508 

36 
1 23 1 

1 910 
1 2772 
1 84 
1 495 

1 
25 

324 
2 900 

20 150 
115 830 
573 300 

300 
5 175 

52 026 
385 020 

2 300 
32 175 

Number of states 1 8 44 192 726 2464 7 704 
at each level , 

in the case 
k = 4  

Number of states 1 24 324 3200 
at each level 25 650 
in the case k = 12 176 256 

1073 720 

The expansion of the bosonic spectrum-generating function xB(x, q )  up to and 
including terms in q5 is given in table 1 ,  confirming earlier results [ 2 ] .  Up to this level 
no modification rules are required for k 3. The dimension of the irreducible rep- 
resentation corresponding to each character [ h ] ( X ) 2 k + l  appearing in the table is dis- 
played in two cases of subsequent interest, namely D =  10 and D=26 .  The total 
number of states at each level is also displayed. 

3. The Neveu-Schwarz string 

We now turn our attention to strings involving both bosonic and fermionic excitation 
operators. In the case of the open Neveu-Schwarz string [ 5 ]  in D-dimensional 
spacetime with D = 2 k + 2  the vacuum state is once again an SO(2k) singlet state which 
is tachyonic but now with mass squared - k / 8 .  Excited states are now generated by 
the action of bosonic operators a t ,  and fermionic operators bf_( , - l12)  with i =  
1,2 , .  . . , 2 k  and n = 1 , 2 , .  . . , CO. For fixed n both the set of bosonic operators and the 
set of fermionic operators transform as the basis states of the defining vector 2k-  
dimensional representation of SO(2k).  Just as the operator a i n  contributes n to the 
mass squared value so the operator b l ( n - 1 , 2 )  contributes n-4. It follows that the 
spectrum-generating function of the Neveu-Schwarz string is then given by 

oi 2 k  

XNS(X, q )  = q-k'8 n n ( 1  -x iq")- ' ( l  + x i q n - l q  
, = I  x = 1  

(3 .1)  
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The factor ( 1  - x i s n )  is associated with the operator a:, and the factor (1+xiqn-’l2) 
is associated with the operator bI(n-1 /2 ) .  The distinction between bosonic and fermionic 
operators is accounted for by the relevant powers being -1  and + 1 ,  respectively, 
allowing for multiple excitations of individual bosonic states but only single excitations 
of individual fermionic states. 

One new ingredient over and above (2.2) which allows us to proceed as before is 
the analogous formula [7, p 103; 8, p 351 

where the summation is carried out over all partitions T. 

In applying (3.2) to (3 .1)  the required specialisation of the character { T ’ } ( z )  is 
obtained by setting z = q’ with qk = qn-‘l2 for n = 1 , 2 , .  . . , N and then taking the limit 
N+co. Denoting this character by {T’} (q ’ )m  it is easy to see that 

{ T’}( q’)m = q-”’l2{ T’}( q ) m  where 171 = / T ’ I  =e T ~ .  

Making use of (2.8) then gives 

(3.3) 

Now, however, it should be noted that there exists a supersymmetric generalisation 
[ 191 of the symmetric functions known as Schur or S functions, namely the supersym- 
metric functions which might conveniently be called SS functions. Just as the S 
function { ~ } ( y ) ~  is the character of an irreducible representation of U ( N )  so the SS 
function { p } ( y / ~ ) ~ / ~  is the supercharacter of an irreducible representation of 
U( M /  N ) .  This supercharacter can be defined in terms of characters of U( M )  x U( N)  
by means of the formula 

Carrying out the same manipulations as before using (2.5) then enables the spectrum- 
generating function to be written in the form 

where { T } ( q / q ’ ) m  is the limit as M + CO and N+ CO of { ~ } ( y / z ) ~ ~ ~  with the specialisa- 
tion y = q and z = 4’. Once again taking advantage of (2.5) then gives 

XNS(x, 4 )  = q-k’8 { ~ } ( q / q ’ ) m H ( q / q ’ ) m [ ~ l ( x ) 2 k + l  * (3.6) 
I* 

Now the specialisation defined above gives [7, p 1251 
F” 

{ p U ) ( q / q ’ ) m =  n (q1+qJ-1 /2 ) (1  -qh”)- l .  
(1.1) 

(3.7) 

Furthermore, the generating function for the SS function series H [20] can be used 
to establish the specialisation 
H(q/q’)oo = n ( 1  + q”)-’( 1 + qm-1/2)-1 n ( 1  - q m + n ) - 1 (  1 - q m + n - l ) - - l  

1%m<m I s m < n < a :  



3988 R J Farmer, R C King and B G Wybourne 

Once again it is necessary to use the modification rule (2.14) to standardise the 
SO(2kS  1) characters [ ) ( * . ] ( x ) ~ ~ + ,  in cases for which p ;  > k. This yields the analogue 
of (2.15), namely 

(3.10) 

where the signed sequence is given as before by each of (2.16), (2.18) and (2.22). In 
the absence of modifications the lowest level, LNs(A), for which [ A ] ( x ) ~ ~ + ~  makes an 
appearance in (3.10) is 

X N S ( &  4 )  = q-k’8 1 { A s k + l > ( q / q ‘ ) c o H ( q / q ’ ) c o [ A l ( X ) Z k + l  

A i S k  

LNs(A) = {i(Ai+A:-2i+ l)-(A{ - i +  1)/2} (3.11) 
i = l  

where r is the Frobenius rank of the partition [7, p 601. Modification rules make their 
presence felt at the level 

(3.12) = LNS(A) + ( 2 k S  1 -2A;)/2. 

Table 2. Gso-projected Neveu-Schwarz spectrum: +{,yNS(x, q )  -,yhs(.r, q ) }  expressed in 
terms of SO(9) characters [A](.$),. 

~ 

1 9 g2 g3 g4 gs Dimension 

[321]t 
[221*] t 
[32 1’1 I 
~ ~ 1 1  

- 1  1 
1 1 1 

1 2 

1 
1 

1 2 
1 2 

1 

1 
1 

1 1 
2 

1 

1 

4 
3 
2 

1 
1 

2 

1 

3 1 
5 9 
9 44 
3 156 
3 450 

1122 
1 2 508 
8 36 

10 231 
7 910 
3 2 772 
1 7 140 

10 84 
9 594 
7 2 457 
1 7 700 
1 20 196 
7 126 

10 924 
4 3 900 
2 12 375 
5 495 
2 2 574 
1 8 748 
4 1650 
2 9 009 
4 2 772 
1 15 444 
1 1980 

Number of states 8 128 1152 7 680 42 112 200 448 
at each level 

t These five entries complete the fourth and fifth levels of the tabulation of [2]. 
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For the S 0 ( 2 k +  1) scalar character [ O ] ( X ) , ~ + ~  this takes the value (2k+ 1)/2 so that 
in the case D = 10 the first modification to the coefficient of [O](x), occurs at the level 
L = z. The minimal case is provided once again by the SO(2k + 1) character [ l k ] ( ~ ) 2 k + ,  
for which the first modification occurs with L= ( k +  1)/2, i.e. L = ;  if k =4.  

Rather than tabulate the complete expansion of the Neveu-Schwarz spectrum- 
generating function, ,yNS(x, q ) ,  given by (3.10), we give in table 2 just those terms 
associated with integer powers of q. The reason for this restriction is made clear in 
0 4. In drawing up table 2 the modifications (2.14) appropriate to SO(9) have been 
used in the calculation of the entries. Thus the resulting expansion only applies to 
the case k = 4 .  However the expansion is complete in this case up to and including 
the sixth level, thus extending previous tabulations [2,21]. 

4. The Ramond string 

Turning now to the Ramond string [6] in D-dimensional spacetime with D = 2kt-2, 
the vacuum state is 2k-dimensional and transforms as the basis of the reducible spin 
representation of S0(2k) ,  whose irreducible constituents are the two inequivalent 
2 k-l-dimensional spin representations. This vacuum state is massless. Excited states 
are now generated by the action of bosonic operators a', and fermionic operators 
d ! ,  with i = 1,2 , .  . . , 2 k  and n = 1,2 , .  . . ,a. For each fixed n both sets of bosonic 
and fermionic operators transform as the basis states of the 2k-dimensional vector 
representation of SO(2k). Their contributions to the mass squared value is n. It follows 
that the spectrum-generating function for the Ramond string then takes the form 

where 
k 

A(X)2k = (x:'2+x;1'2) 
i = l  

(4.2) 

is the character of the reducible 2k-dimensional spin representation of SO(2k). The 
terms in the product are associated with the bosonic and fermionic operators in an 
obvious way. 

Making use of (2.2), (2.5) and (3.2) along with the specialisations defined earlier 
leads to the formula 

where it is to be noted that use has been made of the fact that the character (4.2) of 
the reducible spin representation of SO(2k) coincides with that of the irreducible spin 
representation of SO(2k-t 1). The product of the two characters of S 0 ( 2 k +  1) appear- 
ing in (4.3) may be expressed in terms of irreducible characters by making use of the 
formula [ 151 

A ( X ) 2 k + l [ ~ I ( X ) 2 k + l  = [A; . rr /QI(X)Zkt l  (4.4) 
where Q is an infinite series of S functions such that 

HQ = = c { P  I 
P 

(4.5) 
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with the summation to be carried out over those partitions p for which pj is even for 
all j .  It then follows that 

X R ( X ,  4 )  = E  {/.>(q/q)osB(q/q)co[A; pl(x)Zk+I * 
I.r 

The required specialisation then gives [7, p 1251 
F' 

{ p } ( q / q ) m  = I-J ( q i +  4')(1- q h ' J ) - I  
(8) 

and [20] 

B(q/q),= fl ( l + q m + " ) ( l - q m + n ) - l  
l S m < n < a s  

= 1 +2q2+4q3+8q4+ 16q5+32q6+60q7+ 114q8 

+212q9+384qIo+692q"+. . . . 

(4.7) 

(4.9) 
Once again the summation in (4.6) is over all partitions p and the corresponding 
characters [A; p](X)Zk+] are not all linearly independent. This time the modification 
rule appropriate to the case pcL: > k takes the form [17] 

[A; p](X)Zk+l = (-1)'[A; -hl(X)2k+l with h = 2pU; - 2k - 2 (4.10) 

where the notation is the same as that of (2.14). The application of this to (4.6) then 
gives 

(4.1 1) 

where the signed sequence arising from the modification of spinor characters can be 
written as 

X R ( X ,  4 )  = E  {A~;+l}(q/q)mB(q/q)m[a; hl(X)Zk+l 

(4.12) 

with the summation over all those p such that the repeated application of (4.10) gives 

m 

{A ;;+I} = 1 (- 1)'"{ A + hj, + hj, + . . . + hjm ) 
m=O ( j )  

with 

hj = 2 k + 2  -2(AJ - j +  1) 

and 

Ijl = j , + j 2 + .  . .+ jm 

and that of (2.22) is 

11 * 
{ A S P  } = ~ { 1 ~ ~ - ~ + ~ } - { 1 2 k - ~ ~ + j + ~  

2 k + l  

This time in the special case A = O  we have 

{o;;+~} = { 0 } - { 1 2 ~ + * } + { 2 1 2 k + * } - { 2 ~ ~ + 3 } + .  . . 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

).  (4.18) 
a2 . . .  

r = O  (a )  2 k + l + ~ l  2 k + 1 + ~ 2  . . .  2 k + 1 + a r  
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Table 3. cso-projected Ramond spectrum: +{xR(x, q ) + x k ( x ,  q ) }  expressed in terms of 
SO(9) characters [A;  h ] ( x ) , .  

1 9 q2 q3 q4 4’ Dimension 

I 
2 
1 

.- 

5 -1 2 
1 1 3 

1 2 
1 

1 2 
1 

1 

5 
4 
1 

2 
1 

1 

0 
8 16 

15 128 
12 576 
6 1920 
2 5 280 
1 12 672 

12 43 2 
10 2 560 
4 9 504 
1 27648 
6 168 
4 5 040 
1 19712 
2 672 
1 4 608 
2 4 928 

Number of states 8 128 1152  1 6 8 0  42 112 200 448 
at each level 

t These two entries complete the fifth level in the tabulation of [2]. 

The lowest level, LR(A; A ) ,  at which [A; A ] ( X ) ~ ~ + ~  makes an appearance in (4.11) is 

LR(A;A)= i(Ai+A:-2i+l) 
i = l  

(4.19) 

where r is the Frobenius rank of A. Modified contributions enter for the first time at 
the level 

L =  LR(A; A)+(2k+2-2A:). (4.20) 
For the S O ( 2 k S l )  spinor character A(x)2k+l this takes the value (2k+2)  so that in 
the case of D = 10 and, correspondingly, k = 4 the first modification to the coefficient 
of A(x) ,  occurs at the level L = 10. The minimal case is provided by the S 0 ( 2 k +  1) 
character [A; l k ] ( ~ ) z k + l ,  for which the first modification occurs with L =  (k+2) ,  i.e. 
L = 6  for k = 4 .  

Rather than tabulate the expansion of the complete Ramond spectrum-generating 
function, x ~ ( x ,  q), we give in table 3 the expansion corresponding to the case k = 4  
with all entries associated with excited states halved. Once again the reason for making 
this restriction will be made clear in § 5 .  The expansion covers the ground state and 
the first five excited states, thereby extending previous tabulations [2,21]. Since the 
modification rule (4.10) appropriate to SO(9) has been used in calculating the entries, 
the results apply only to the case k = 4. 

5. The Green-Schwarz superstring 

Although the Neveu-Schwarz string model and the Ramond string model described 
in 99 4 and 5 each involve bosonic and fermionic excitation operators, neither of them 
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is spacetime supersymmetric. A very significant advance was made by Gliozzi et a1 
[9] who combined these two models but restricted the Neveu-Schwarz sector to states 
of even G-parity and the Ramond sector to one for which the ground state is a 
Majorana-Weyl spinor. They did this by applying what has become known as the 
GSO projection. For general spacetime dimension D the corresponding Neveu- 
Schwarz-Ramond spectrum-generating function takes the form 

XNSR(X, 4 )  =X:SR(X, q ) + X k S R ( X ,  4 )  ( 5 . 1 )  

where the generating function for the bosonic Neveu-Schwarz sector is given by 

(5 .2 )  k / 4  I 
X;SR(% q ) = h N S ( X ,  q ) + ( - 1 )  XNS(X,  4 ) )  

with 

CC 2k 

XNJX, q )  = q - k / 8  n n ( 1  - X j q n ) - l (  1 + X i q n - l ’ 2 )  
n = l  i = l  

as in (3.1), and 

m 2k 

X.Js(X, q )  = -qk’8 n n ( 1  -x ,qn)-1( l -x ,qn-”2) .  
n = l  i = l  

Similarly, that of the fermionic Ramond sector is given by 

X L S R ( X ,  4 )  =!dXR(X, q)+Xk(x, 9)) 

with 

as in (4.1), and 

(5.3) 

(5.4) 

(5.5)  

where 

i = l  i = l  

It was observed [9] that in the case k = 4 corresponding to D = 10 this model is both 
free of tachyons and apparently supersymmetric in the sense that the partition functions 
for the Neveu-Schwarz and Ramond sectors are identical, thanks to the ‘aequatio 
identica satis abstrusa’ due to Jacobi [lo,  p 1471 

This is where the matter stood until a manifestly supersymmetric version of this 
model was developed by Green and Schwarz [ l l ] .  At first sight their model looks 
quite different since both the ground state and the excitation operators are different 
from those associated with the Neveu-Schwarz and Ramond models. The model was 
constructed in the lightcone gauge in ten-dimensional spacetime. The relevant trans- 
verse symmetry group is SO(8). 
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There exist three inequivalent fundamental eight-dimensional irreducible rep- 
resentations of SO(8). These are the vector representation, 8,, and two spinor rep- 
resentations, 8, and 8,, specified by the Dynkin labels (lOOO), (0010) and (OOOl), 
respectively. These representations are also denoted [22] by [l], A+ and A - .  Their 
characters are given in terms of the eigenvalues xi and x;' , for i = 1 , 2 , 3  and 4, of an 
arbitrary SO(8) group element, by 

( 5 . 1 0 ~ )  

This triality of SO(8) is such that, if group elements are parametrised by y and z rather 
than x, where 

then 

The open superstring model of Green and Schwarz involves a ground state trans- 
forming as the reducible SO(8) representation 8,+ 8,. Excited states are generated by 
the action of the bosonic operators a! ,  and the fermionic operators s?,, . Once again 
n = 1 , 2 , .  . . ,CO, whilst both i and a range over the values 1 , 2 , .  . . ,8 .  For fixed n, a:, 
with i = 1 , 2 , .  . . , 8  transform as the basis states of the vector representation 8, and s?,, 
with a = 1,2, . . . , 8  transform as the basis states of the spinor representation 8,. Their 
contribution to the mass squared value is in each case given by n. The spectrum- 
generating function for the Green-Schwarz superstring is then given by 

m 8  

x G S ( X ,  9) = ( [ ~ I ( x ) ~ + A + ( x ) ~ )  n: n ( 1  -Xiqn)-'(l + ziqn) (5.13) 

where the components of z are given in terms of those of x by (5.1 1). This complication 
means that it is a non-trivial exercise to expand the spectrum-generating function (5.13) 
in the required form (1.1).  However, it should be noted that the SO(8) triality relations 
(5.12) are such that (5.13) can be written in the form 

n = l  i = l  

(5.14) 
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In order to establish that the Green-Schwarz model has precisely the same spectrum 
as the D = 10 Gso-projected Neveu-Schwarz-Ramond model it is convenient to intro- 
duce the function 

X 

4 ( 4 ) =  n ( 1 - 4 " )  
n = 1  

and the theta functions [ lo ,  p 228; 23, p 469; 24, p 691 
m 

io,([, 7) = q1/s(x1/2-x-1/2)  n ( 1  - q n ) ( l  -xqn)( l  -x-Iqn) 

e2([ ,  ~ ) = q ~ / ~ ( x ~ / ~ + x - ~ / * )  n ( l - q n ) ( i + x q n ) ( i + x - ' q " )  

e,([, 7)= n ( i - ~ n ) ( i + x q n - 1 ~ 2 ) ( i + x - 1 ~ n + 1 ' 2 )  

e,([, T ) =  IT ( 1 - q " ) ( l - x q " - " 2 ) ( 1 - x - 1 q n - 1 ' 2 )  

n = l  

X 

n = 1  

X 

n = 1  

X 

n=1 

where 

(5 .15 )  

(5.16) 

q = exp(i2rr.r) x = e x p ( i 2 ~ 5 ) .  (5.17) 

Furthermore, defining theta function products by 

and introducing 
x k  

$(& 7) = n n ( 1  -qn)-I(l -x,q")-'(l - x ; ' q " ) - '  (5.19) 

it is possible to rewrite (2.1), (5.3)-(5.7) and (5.13) in terms of these functions. The 
resulting expressions take the form 

n = l  i = l  

(5.20) 

( 5 . 2 1 ~ )  

(5.21b) 

( 5 . 2 1 ~ )  

(5.21d) 

where now 

xj = exp(i2rtj) for j = l , 2  , . . . ,  k. (5.22) 

Turning now to the Green-Schwarz spectrum-generating function, (5.14) can be 

(5.23) 

written in the form 

X G S ( ~ ,  4 )  = q-1/2&(& T)+(&,  7) 

with 

zj = e x p ( i 2 ~ 6 )  for j =  1 , 2 , 3 , 4  (5.24) 



Spectrum-generating functions 3995 

and x and t are related by (5.11). Now the equivalence of the Green-Schwarz model 
and the D = 10 cso-projected Neveu-Schwarz-Ramond model follows immediately 
from the theta function identity due to Jacobi [lo, p 505; 23, p 4681 

(5.25) 

where use has been made of the eveness or oddness of the various theta functions. 
This implies, on comparing (5.21) in the case D = 10 and correspondingly k = 4 with 
(5.14), that 

62(S, 7) = D 3 ( &  7) - e,(&, 7) + 7) + el(& 7)) 

X G S ( X ,  4 )  = XNSR(X, 4 )  

= t { X N S ( X ,  q ) - X k J S ( x ,  q ) + X R ( x ,  q)SXk(x,  4) ) .  (5.26) 

This result seems to have first been obtained in this way by Nahm [ 121. It is now clear 
that the required generalisation of Jacobi's abstruse identity (5.9) which would have 
considerably strengthened the arguments of Gliozzi et a Z [ 9 ]  in favour of full spacetime 
supersymmetry is provided by the theta function identity (5.25)-again due to Jacobi. 
Of course, (5.9) follows from the special case of (5.25) obtained by setting xj = 1 or, 
equivalently, tj = 0 for j = 1,2,3,4.  

A particular merit of the identity (5.26) is that it enables the spectrum-generating 
function for the Green-Schwarz superstring to be written in terms of SO(8) and SO(9) 
characters by means of the results of 0 9  2-4. For k = 4 the GSO projection (5.2) is such 
that in the Neveu-Schwarz sector the surviving terms in the expansion of (3.10) in the 
form (1 .l) are those for which the mass squared value Lo + L = L - 4 is an integer. Thus 
the terms proportional to half-odd-integer powers of q are to be discarded. This 
restriction is precisely the one used in 0 3 in drawing up table 2, which thus gives the 
bosonic states of the lowest mass levels of the Green-Schwarz superstring. The 
tachyonic state is thus lost and the ground state is the massless state transforming as 
8,. In the same way the G S O  projection (5.5) is such that in the Ramond sector the 
ground state is the massless state transforming as 8,, whilst the excited states are 
obtained from (4.11) simply by halving the coefficients of all the characters of SO(9). 
This restriction coincides with that used in drawing up table 3, which thus gives the 
fermionic states of the lowest mass levels of the Green-Schwarz superstring. 

The supersymmetry of the model shows itself in the equality between the number 
of bosonic and fermionic states at each level in tables 2 and 3. 

6. Heterotic strings 

All the string models discussed so far have been open string or open superstring models. 
Rather than consider the whole range of closed string models we now turn to heterotic 
strings [ 131. These are closed orientable superstrings constructed as a chiral combina- 
tion of D = 10 right-moving Gso-projected Neveu-Schwarz-Ramond states together 
with D = 26 left-moving bosonic string states compactified over a sixteen-dimensional 
torus in such a way as to leave D = 10 left-moving bosonic string states carrying 
quantum numbers of a rank 16 gauge group G. The compactification involves sixteen- 
dimensional even self-dual lattices, r, of which there are just two [25, p 551, T8 x Ts 
and r16, which are associated with the gauge groups E8 x E8 and Spin(32)/Z2, respec- 
tively. 

The spectrum-generating function for the right-moving sector is given by 

X;E'dx, r ,  = X N S R ( X ,  r ,  = X G S ( x ,  r )  (6.1) 
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where r rather than q has been used as the variable whose exponent is the excitation 
level in this right-moving sector. This function has been fully discussed in 9 5 and its 
expansion is given in tables 2 and 3. 

The spectrum-generating function for the left-moving sector is more complicated. 
The ground state is a scalar. There exists a set of bosonic excitation operators a', 
with i = 1 , 2 , .  . . , 8  and n = 1,2, .  . . , W .  As usual these operators, for each fixed n, 
transform as the basis states of the vector representation 8, of SO(8). In addition there 
exist bosonic excitation operators c?!, with I = 1,2 , .  . . , 16 and n = 1 , 2 , ,  . . , CO. 

However these operators are scalars as far as SO(8) is concerned. They are each 
associated with the zero vector in the sixteen-dimensional even self-dual lattice. Finally 
there exist so-called momentum operators p', with I = 1,2, .  . . , 16, associated with the 
vectors specifying the lattice points of r. 

In flat ten-dimensional spacetime the contribution to the value of the mass squared 
for both a:,, and c?Ln is given by n, and p 1  contributes ( ~ ' ) ~ / 2 .  It follows that the 
left-moving spectrum-generating function can be written in the form 

m 8  m 

x ~ E T ( x ,  t, q ) = q - '  n JJ (1 -xiq")-' n (1 - q n ) - I 6  C t m q ( m ' m ) / 2  (6.2) 

where q has been used as the parameter whose exponent gives the left-moving excitation 
level. The notation is such that 

(6.3) 

n = l  i = l  , , = I  m s r  

t m  = f y l p .  , . tyl . . . 
and the summation in (6.2) is carried out over all vectors m specifying points in the 
even self-dual lattice r. As usual, the components xi of x, with i = 1,2,3,4,  serve to 
parametrise the conjugacy classes of SO(8). The connection between the lattice r and 
the gauge group is such that each component f, of t with I = 1,2, .  . . , 16 serves to 
parametrise the conjugacy classes of the relevant gauge group G. Thus in (6.2) m is 
to be interpreted as a weight vector of G. 

The left-moving spectrum-generating function (6.2) can be written in the form 

XhET(x, i, 9) = XB(X, q ) X O ( t 7  4 )  (6.4) 
where 

The lattice T8 x r8 coincides with the weight lattice of E8 x E*, whilst rI6 coincides 
with the weight lattice of Spin(32)/Z2. This is the weight lattice associated with the 
tensor representations [ A ]  of S0(32), with lAl  even, and the spinor representations 
[A; A]+ and [A; A]-, with ( A I  even and odd, respectively. Thus (6.5) may be evaluated 
by making direct use of these weight lattices [l]. However, an alternative procedure 
is provided by yet another set of theta function expansions [lo, p 501; 23, p 464; 24; 

io,([, = 1 (-l)mXm+l/2 9 ( m + l / V / 2  ( 6 . 6 ~ )  

(6.6b) 

( 6 . 6 ~ )  

pp 60-31: 

m s Z  

m + 1 / 2  ( m + 1 / 2 1 2 / 2  
02(6,7)= c x 4 

m s Z  

s , ( l ,  7) = c xmqm212 
m s Z  

(6.6d) 
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It follows that 

( 6 . 7 ~ )  

(6.7b) 

( 6 . 7 ~ )  

(6.7d) 

where Iml= m, + m2 + . . . + mk. 
For k = O(mod 8) the lattice r k  is even and is defined [25, p 511 by 

r k = { m / 2 m , ~ Z ,  m,-mjEZ,lm1/2EZ, i , j = 1 , 2  , . . . ,  k}. (6.8) 

(6.9) 

It follows from (6.7) and (6.8) that for k = O(mod 8) 
X m q ( m . m ) / 2  - 1 - 2{@1(&,T) + e,(&, 7 )  + e,(&, 7) + e,(&, 711 - 

mar, ,  

In applying this identity to (6.5) in the case r = Ts x Ts it is convenient to write t = ( U ,  U )  
and then to extend U and U from eight-component vectors to sixteen-component vectors 
in such a way that for U, for example, 

ur+g = U;' = exp(-i2.rral) for I = l , 2  ,..., 8.  (6.10) 

Then 

X E ~ X E ~ ( ~ ,  4 )  = X E S ( ~ ,  q ) x E 8 ( u ,  9) (6.11) 

with the spectrum-generating function xE8( U,  q )  given by 

XE8(% q ) =  +(q)-'${el(% T)+eZ(a, T ) + e 3 ( a ,  T ) + e 4 ( a ,  T ) } *  (6.12) 

The expression (6.12) may be written in terms of characters of SO(16) by noting that 
from (5.16) 

n = l  I = 1  

00 16 m 16 

n = l  I = 1  " = I  r = i  
+4A(u)16 n (1+ulqn)+qA'(u)16  n ( l - u I q n ) ) .  (6.13) 

Making use of (3.2), (2.3) and (4.4) it follows that 

XE,(u, 4 )  = C { ~ ' } ( ~ ' ) m o ( ~ ) ~ [ ~ 1 ( r r ) 1 6 + q  {p'} (q)mF(q)m[A;  p](-I)"'(u)l6 (6.14) 
P CL 

IcLleven 

where [15] 

00 = F = C  (5) (6.15) 

with the first summation over those partitions 8, all of whose parts Sj are even, and the 
second over all partitions 5. The generating functions for the series D and F [ 161 are 
such that 

D( q)m = 1 + q2+  q3+3q4+ 3q5 + 7q6+ 8q7+ 16qs+ 20q9+ 35q'O 

i 
D=C{SI 

+ 16q1'+77q12+102q13+161q'4+. . . 
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and 
F ( q ) m  = 1 + q +2q2+4q3+7q4+ 12q5+21q6+ 34q7+ 56q8 

+90q9+ 143q10+223q11+348q12+532q13+. . . . 
For completeness we note that in general it is necessary to apply the following 

modification rules [17] analogous to those of (2.14) and (4.10): 

[WI(X)Zk = (-l)J-l[P - hl(XI2k with h = 2 p ; - 2 k  (6.16) 

and 

[A; p]+(x) = (-l)’[A; p - h ] T ( ~ ) Z k  with h = 2 / ~ ; - 2 k - 1 .  (6.17) 

Their application leads to 

XE8(U, 4 )  = {Afk}(q’),D(q),[Al(u)16 
I A leven,A / G 8 

+ q  c {A;:’}(q)mF(q)m[A; (‘)16 (6.18) 

where now the signed sequences are conjugated. The expansion of this spectrum- 
generating function in terms of characters of SO( 16) is given in table 4. The first seven 
levels are displayed. 

Finally, it is necessary to express the characters of SO(16) in terms of those of E8. 
No simple formula exists for this step. However, there are several tabulations [26,27] 
of the branching rules of representations of Es restricted to the subgroup SO(16). 
These lead to the results given in table 5 in which each irreducible representation of 
E8 has been labelled by ( A )  or ( A ;  A )  where A or A; A is the highest weight of the set 
of irreducible representations contained in the restriction of the E8 representation to 
SO(16) [26]. The table extends as far as the level L = 6 .  As dictated by (6.11) the 
product of two such expansions yields the expansion of the complete E8 x E8 spectrum- 
generating function. This is expressed in terms of characters of Es x E8 in table 6, 
which extends to the level L = 6, thereby extending a previous tabulation [28] as far 
as the level L = 4 .  

A i s 8  

Turning now to the case of r = ri6, with the notation 
f1+16 = t;’ = exp(-i2.rryr) for I =  1 , 2 , .  . . , 16 (6.19) 

the application of (6.9) to (6.5) yields the formula 

x D , , ( ~ ,  q )  = dw-165{e1(y, T)+UY, T I +  e d y ,  T ) + ~ A Y ,  7 ) )  (6.20) 

and hence 
m 32 m 32 

xD,6(u, q ) = i (  n n (l+urqn-1/2)+ n n (1-urqu-1/2) 
n = l  r = i  n = l  r = i  

(6.22) 
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Table 4. ,yEs(x, q )  expressed in terms of SO(16) characters [ A ] ( x ) , ~  and [A; A ] ( x ) , ~ .  

1 9 s '  4' 4' 4' q6 Dimension 

1 1 1 3 
1 1 3 4 

1 1 3 
1 1 

1 
1 

1 1 3 
1 2 

1 

1 

3 
9 
5 
4 
1 
1 
4 
5 
2 
1 
1 
1 

1 

7 1 
13 120 
12 1820 
6 8 008 
3 6 435 
3 6 435 
9 135 
9 7 020 
5 60060 
3 162 162 
4 5 304 
2 141372 
1 716040 
1 89760 
2 8 925 
1 176800 

Number of tensor 1 120 2076 
states at each level 17 344 

106 630 
528 608 

2265 656 

1 1 2 4 7 12 
1 2 4 8 15 

1 2 5 10 
1 2 5 

1 2 
1 

1 2 5 
1 3 

1 

128 
1920 

13 312 
56 320 

161 280 
326 144 

15 360 
141 440 
670 208 

Number of spinor 128 2048 
states at each level 17 408 

106 496 
528 896 

2265 088 

Total number of states 1 248 4 124 
at each level 34 752 

213 126 
1057 504 

4530 744 
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Table 5. E, spectrum: &(x, q )  expressed in terms of E, characters ( A ) ( x )  and (A; A ) ( x ) ,  

1 4 q2 q4 q5 q6 Dimension 

1 1 1 2 2 4 1 
1 1 2 3 5 7 248 

1 1 2 3 6 3 875 
1 1 3 4 30 380 

1 1 3 27 000 
1 1 2 147 250 

1 2 779 247 
1 2 450 240 

Number of states 1 248 4124 34752 213 126 1057 504 4530 744 
at each level 

Table 6. E, x E, spectrum: ,yEaxE,(x, q )  expressed in terms of E, x E, characters specified by their dimension- 
ality. 

1 q  9' s' q4 q5 q6 

1 x 1  1 2 
248 x 1 + 1 x 248 1 1 
3875 x 1 + 1 x3875 1 
248 x 248 1 
30 3 8 0 x  1+ 1 x 3 0  380 
3 8 7 5 x 2 4 8 + 2 4 8 ~ 3 8 7 5  
2 7 0 0 0 x 1 + 1 x 2 7 0 0 0  
1 4 7 2 5 0 x 1 + 1 ~ 1 4 7 2 5 0  
3 0 3 8 0 ~ 2 4 8 + 2 4 8 ~ 3 0 3 8 0  
3875 x 3875 
779 247 x 1 + 1 x 779 247 
27000x248+248x27000  
1 4 7 2 5 0 ~ 2 4 8 + 2 4 8 ~ 1 4 7 2 5 0  
30 380 x 3875 + 3875 x 30 380 
2 4 5 0 2 4 0 ~ 1 + 1 ~ 2 4 5 0 2 4 0  
7 7 9 2 4 7 ~ 2 4 8 + 2 4 8 ~ 7 7 9 2 4 7  
27000x3875+3875x27000  
1 4 7 2 5 0 ~ 3 8 7 5 + 3 8 7 5 ~ 1 4 7 2 5 0  
30 380x  30 380 

2 5 
3 5 
1 3 
2 5 
1 1 
1 2 

1 
1 
1 
1 

6 
10 
5 

10 
4 
5 
1 
1 
2 
2 
1 
1 
1 
1 

13 
16 
11 
20 

6 
10 
4 
3 
6 
5 
2 
2 
2 
2 
1 
1 
1 
1 
1 

Total dimension at each level 1 496 69 752 2115 008 
34 670 620 

394 460 000 
3499148222 
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and hence, via (6.16) and (6.17), to 

(6.23) 

This expansion in terms of characters of SO(32) or, more properly, of Spin(32)/Z2, 
is developed as far as the level L = 6 in table 7. 

A check on these calculations is provided by the equality between the total number 
of states at any given level as given by the E 8 x E 8  model and by the Spin(32)/Z2 
model. The results of tables 6 and 7 confirm this equality, which is a reflection of the 
fact that the partition functions of these two models are identical. This can be viewed 
as yet another consequence of Jacobi's abstruse identity (5.9). In fact, successive 
powers of (5.9) lead via the trivial identity 

to 

The partition function P E s ( q )  for the E8 spectrum is obtained from (6.13) by setting 
uI = 1 for Z = 1,2, .  . . , 16. It follows from ( 6 . 2 5 ~ )  that 

(6.26) 

The partition function PEsxEs(q) for the E8 x E8 spectrum is then obtained from (6.11) 
by setting both uI and vl  = 1 for Z = 1 , 2 , .  . . , 16, so that 

PEsxEs(q) = p E g ( q )  P E g ( q ) *  (6.27) 

The Spin(32)/Z2 spectrum partition function PD16(q) is obtained in the same way from 
(6.21) by setting ul = 1 for Z = 1,2, .  . . , 32, and it follows from ( 6 . 2 5 ~ )  that 
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Table 7. Spin(32)/Z2 spectrum: xD, , (x ,  q )  expressed in terms of SO(32) characters [A](x),, 
and [A; A I ( X ) ~ ~ .  

1 s s ‘  s‘ q4 d q6 Dimension 

[ O I  1 1 1 3 3 7 1 
[I2] 1 1 3 4 13 496 
ri41 1 1 3 5 11 35 960 
[ I6]  1 1 3 5 906912 
[I8] 1 1 3 10518300 
r 1 ‘OI  1 1 64512240 
[ 1 121 1 225792840 
[21 1 1 3 4 9 527 

1 2 5 9 122264 
w41 1 2 5 5501 880 
w61 1 2 96282900 
[2181 1 822 531 060 
P21 1 1 4 86 768 
[2212] 1 2 11 269368 
[2*i41 1 336226000 
~ 2 ~ 1  1 6678 144 
[311 1 2 138 105 
~ 3 1 ~ 1  1 13290816 

Number of tensor 1 496 
states at each level 36 984 

1 066 432 
17 369 116 

197 327 712 
1749 861 312 

[A;  01, 1 1 2 4 7 32 768 
[A; 11- 1 2 4 8 1015808 
[A; 121+ 1 2 5 15204352 
[A;  13]- 1 2 146276352 
[A; i41+ 1 1015808000 
[A; 21, 1 2 16252928 
[A;  211- 1 324042752 

Number of spinor 
states at each level 

32 768 
1048 576 

17 301 504 
197 132 288 

1749286912 

Total number of states 1 496 
at each level 69 752 

2 115008 
34 670 620 

394 460 000 
3499148224 
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Table 8. Heterotic string spectra: xHET(x, t, y, r )  = ,yiET(x, r )  xbET(x, t, q )  expressed in 
terms of contributions from the various right-hand levels of ,yiET(x, r )  =xGS(x, r )  matched 
with the left-hand levels of ,ybET(x, t, y) =xB(x, q ) x C ( f ,  4). Contributions, signified by their 
dimensionalities, are taken for the right-hand sector from tables 2 and 3, and for the 
left-hand sector from table 1 and either table 6 or 7 as appropriate for Es x Es or Spin(32)/Z2, 
respectively. 

x L E d X ,  r)XkET(X, 4 )  

(8+8)(1 x 4 9 6 + 8 x l )  
( I28 + 128)( 1 x 69 752 + 8 x 496 + 44 x 1) 
(1152+ 1152)( 1 x 2115 008+8 x 69 752+44x 496+ 192 x 1) 
(7680+ 7680)( 1 x 34 670 620+ 8 x 2115 008 +44 x 69 752 + 192 x 496+ 726 x 1 )  
(42 112+ 42 112)(1 x 394 460 OOO+ 8 x 34 670 620+44 x 21 15 008 + 192 x 69 752+ 726 x 496+2464 x 1) 
(200448+200448)(1 x3499 148 224+8x394460000+44x34670620+192x2115 008 

+726x69 752+2464~496+7704x 1 )  

which is clearly the square of (6.26). Thus, as claimed, the partition functions of 
Es x Es and Spin(32)/Z2 coincide. 

In the case of both heterotic string models described here it is essential to match 
up the excitation levels of the right-moving and left-moving sectors, as pointed out for 
all closed string models in the introduction. The required spectrum-generating func- 
tions take the form 

(6.29) 

(6.30) 

X$;:YX, U, uy r, 4 )  =xEET(x ,  r ) ~ k E T ( x ,  U, uy 9 )  

= X G S ( X ,  r)XB(x, q)XEs(U, q)XE8(tc,  4 )  

and 

(6.31) 

=XGS(X, r ) X B ( x ,  q ) X D , 6 ( t ,  4 ) -  (6 .32)  

In (6.30) and (6.32) it is only necessary to retain those terms for which the exponents 
of r and of q are equal. Amongst other things this has the effect of eliminating tachyon 
states. The content of the massless ground state and the first five excited states is given 
in table 8 where the first factor arises from xEET(x, r )  and the second from 
xkET(x, U, U, q )  or xkET(x, t, 4 ) .  All contributions have been signified by means of their 
dimension. The two terms in the first factor are to be taken from tables 2 and 3. Each 
term in the second factor is a product of terms to be taken from table 1 in the case 
SO(9) and terms to be taken from table 6 or 7 as appropriate for the E8 x E8 or 
Spin(32)/Z2 models. The final step is that of combining the SO(9) characters from 
the left and right sectors and expressing them linearly in terms of SO(9) characters. 
This step is straightforward enough once it is realised that in the second factor of each 
expression in table 8 the SO(9) character signified by 8 should be treated as 9-  1 and 
that each excited state contains its predecessor [ 11. 

Spin(32)/Z 
X H E T  2(x, t, ry q ) = X E E T ( X ,  r)XkET(Xy t, 4 )  

7. Conclusions 

The spectrum-generating functions for strings and superstrings calculated in this paper 
show a remarkable similarity. This is due to the underlying presence in the analysis 



4004 R J Farmer, R C King and B G Wybourne 

of various products and sums of theta functions. This is no accident, of course, since 
it is a necessary requirement, as stressed for example by Nahm [12], for the string 
models to exhibit modular invariance. Here we have not been directly concerned with 
modular invariance, nor have we been concerned with algebraic structures other than 
finite-dimensional simple Lie algebras, the characters of whose irreducible representa- 
tions have served as the basis for all our expansions of spectrum-generating functions. 
Indeed we have deliberately eschewed the use of Kac-Moody algebras, although our 
results incorporate useful explicit information on the characters of some irreducible 
representations of these infinite-dimensional Lie algebras. 

Apart from giving results appropriate to particular string and superstring models 
the merit of our approach involving theta functions and characters of SO(2k) and 
S 0 ( 2 k +  1) is that it is amenable to calculations for all values of k if modification rules 
are taken into account. For example, table 7 has been drawn up in the case k = 16 
appropriate to SO(32). However, for all the levels tabulated no modifications are 
required for this value of k. For larger values of k table 7 applies as it stands. For 
smaller values modification rules may be needed. For example, the results appropriate 
to SO(16) given in table 4 may be recovered from table 7 merely by noting that the 
modification rules of SO(16) given by (6.16) and (6.17) imply 

[218] = [216] [I**] = [i41 [ 1 lo] = [ 1 

whilst 

[ 1x1 = [ 1 *I+ + [ 1 8] -. 

(7.1) 

(7.2) 

These SO( 16) results of table 4 are of relevance to D = 18 models [ 141. Equivalent 
SO(8) results may be obtained in the same way. 

The k dependence of the GSO projection in the Neveu-Schwarz sector as defined 
by (5.2) is crucial in yet another model, namely the D = 26 giant superstring model 
introduced by Thierry-Mieg [ 141. The relevant transverse symmetry group is SO(24) 
and the spectrum-generating function takes the form 

with 

XrRM(X, r) = X d X ,  r) 

X+M(X, 4 )  = ; { X N S ( X ,  4 )  -Xhs(X,  4 )  + X R ( X ,  4 )  -xk(x, 4 ) ) .  

(7.4) 

and 

(7 .5)  

The first minus sign in ( 7 . 5 )  is dictated by the GSO projection but the second is a matter 
of taste and has been chosen so that 

Xkl (X ,  4 )  = qXB(x, 4)4-3'2xD1z(x9 4 )  (7 .6)  

where, as in (6.5), 

and r,* is an odd lattice defined by 
r I 2 = { m ) 2 m i ~ Z ,  m,-mjEZ,( lmJ-1)/2EZ,  i , j = 1 , 2  , . . . ,  12). ( 7 . 8 )  
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Table 9. q-3'2,yD,,(x, q )  expressed in terms of SO(24) characters [A](x)*~ and [A; A ] ( X ) ~ ~ .  

4-1 1 9 42 4' q4 q5 Dimension 

1 1 2 3 6 
1 1 3 5 

1 1 3 
1 1 

1 

1 2 4 
1 2 

1 

1 

1 

9 
10 
5 
3 
1 
1 
8 
5 
2 
1 

2 
1 

1 
1 

16 24 
16 2 024 
11 42 504 
5 346104 
3 1307504 
2 2496 144 

15 4 576 
10 210496 
5 2841 696 
2 15 997 696 
1 43266496 
5 299000 
2 8288280 
1 74989200 
1 9472320 
3 2 576 
2 388080 
1 9614000 
1 351 624 

Number of tensor 24 2 048 
states at each level 49 152 

614 400 
5 373 952 

37 122 048 
216 072 192 

1 1 2 4 7 12 2 048 
1 2 4 8 15 47104 

1 2 5 10 516096 
1 2 5 3 579904 

1 2 17616896 
1 65286144 

1 2 5 565248 
1 3 8243200 

1 64204800 

Number of spinor 2 048 
states at each level 49 152 

614 400 
5 373 952 

37 122 048 
216 072 192 

Total number of 24 4096 
states at each level 98 304 

1228 800 
10 747 904 

74 244 096 
432 144 384 
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It then follows that 

x 24 a? 24 

n = l  1 = 1  n = l  I = 1  

9 24 03 24 

+ q3l2A(x)24 n n (1 +x lqn)  - q3/’A’(xL4 n n: (1 - x I q n ) )  (7.10) 
n = l  I = 1  n - l  I = l  

= C {/1’}(qr)xO(q)a?[/1I(x)24+ q3’* {/1’I(q)mF(q)m[A; / 1 1 1 ( - i ) l * ~ - 1 ( ~ ) 2 4  
I.L CL 

M o d d  

(7.11) 

as in (6.12)-(6.14). This expansion yields for the first few levels the spectrum displayed 
in table 9. Apart from the tachyonic lowest level the spectrum is remarkable for the 
equality between the number of bosonic and fermionic states at each level. This 
supersymmetry owes its origin to the cube of the Jacobi identity (5.9) which leads, via 
(6.25b), to the relationship between the k = 12 cso-projected Neveu-Schwarz and 
Ramond partition functions first pointed out by Thierry-Mieg [14]. The left-hand 
sector of the giant superstring model is then obtained by deleting the lowest tachyonic 
level of the expansion given in table 9 and forming a product with q times the expansion 
of table 1. The right-hand sector is given precisely by the expansion of table 1. The 
complete spectrum is then recovered in the usual way by matching the levels of the 
left- and right-hand sectors. 

It is clear that the techniques described here have application to a wide variety of 
string models and we anticipate that they can be developed further to encompass newer 
twisted versions of heterotic strings [29]. 
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